Archive | The Body RSS for this section

Of Sound Machines and Recording, Sharing that Transcends Time and Space

S1040027

This is the conclusion to a two-part post by SO! regular writer Maile Colbert.  Read Part One from Monday, January 12th here.

As we are primarily a visual culture, no longer connected to what environments can tell us through sound, we’ve lost aural acuity once central to the dynamic of our lives.

From what we have just begun to see, it appears that ancient human beings had learned well the lessons imparted by natural sounds. Their lives depended as much (if not more) on their ability to hear and understand the audio information imparted by their surroundings as those given by visual cues. –Bernard Krause, Ph.D The Soundscape Newsletter 06, June, 1993

Birth 

All newborns emerge with the same cry, it is near impossible to distinguish one from another, even as a mother. This could be for many reasons and serve many purposes. Should something happen to a birth mother, the indistinguishable cry may help draw attention from another. It could be that, considering niche effect (in which animals adapt their calls to a frequency less populated by other environmental sounds), aside from biological reasons, a newborn’s cry is shaped by the wombscape from whence it came, and I speculate that generally speaking one wombscape is similar to another. Primarily what a fetus is hearing is low frequency. So it would serve that they would have an instinct to initially call out in a high frequency range. The baby then develops its cry according to its surrounding, such as a household in the city versus a country, a household with other children or not, a household with constant media sound.

My daughter has the most incredible earsplitting high frequency bark when she wants attention. If this doesn’t work (such as when “Baby, Mama has to wash the garden manure from her hands before she picks you up”), she’ll roll into a gritty horrific low growl that sounds like she’s being strangled. One of these always works, and I often wonder about these sounds’ relationship to the white noise (her specific mix in a more mid-range involving pink noise and a “rain on roof” recording) that has been a constant since her birth, and is still used for naps, some feedings, and bedtime.

 

Sound Machines and Noise

From my late pregnancy insomnia, to creating a calming environment in the labor room at the hospital, to keeping a consistent calming environment in the recovery room, to using that sound as a signal that it is time to calm, time to sleep…a sound machine has been a constant already in my daughter’s new world. It started with an app in Paris, at a festival during my third trimester, my waddling condition wouldn’t allow me to walk around much nor meet friends for drinks, etc. So I choose to stay in the hotel room and read. The fetal babe wasn’t in the mood to read, kicking and dancing, perhaps excited from the music at the festival. For a little while I played with her, her kicking in response to my pokes and prods. But soon I knew we both needed to both settle down. I was always fascinated by my parents’ sound machine as a child, it seemed something magical. I found and downloaded an app that allowed you to create your own mix, and so it began.

But recent research poses the question of whether a sound machine can actually affect hearing development. Some researchers have questioned if prolonged exposure to consistent sound could affect auditory pathways to the brain. I wonder what then of infants who grow up near, say, the ocean…or like my mother near a stream and small waterfall, a constant sound in her childhood and soundtrack to her memories from then. Or near a busy road or even walkway. Of course I want the babe to grow up to enjoy and focus on a varied soundscape. But at certain points, the noise has been a lifesaver! It’s been especially useful now combatting construction sounds, as babies tend to focus on background sounds, most likely for survival:

.

Of course it is very important to be aware of the strength of the sound a baby is exposed to, all too easy for our very visual culture to ignore. Even a sound machine with the volume too high, or the proximity too close, could reach decibels over 80, a threshold that could cause the tiny hair cells in the ear needed for hearing to die. As we lose these, we start to lose our hearing. The amount of energy in a sound doubles with even just a three decibel climb. If any sound makes it difficult to hold a regular conversation, chances are it’s past this threshold and could be doing damage. Our world is in many ways getting increasingly louder. As our cities grow, its sounds grow, and we are exposed to more constant and louder soundscapes. Will an accidental evolution be for us to adapt to losing our hearing? For me of course, this is a very bleak thought.

 

Death

Your words are preserved in the tin foil and will come back upon the application of the instrument years after you are dead in exactly the same tone of voice you spoke in then. . . . This tongueless, toothless instrument, without larynx or pharynx, dumb, voiceless matter, nevertheless mimics your tones, speaks with your voice, speaks with your words, and centuries after you have crumbled into dust will repeat again and again, to a generation that could never know you, every idle thought, every fond fancy, every vain word that you chose to whisper against this thin iron diaphragm.

-Edison’s Ars Memoria, concept for the phonograph

Kauai O'O

Kaua’i `O’o, extinct since 1987

A recorded sound transcends time. It allows a listener to share a space and perspective with the recordist. It allows a future people to hear the songs of people passed, and of their shared past. It allows for an extinct bird to call into the future, for a child to hear that bird and wonder, and question, and to have that question affect her future and therefore perhaps the future of others. I often think about what soundscapes or sound I have experienced that my daughter might not have the opportunity to experience when she’s older. Already since my childhood growing up in part in Hawaii, three birds I knew, I had heard, that my mother grew up with, that her father grew up with, that his parents grew up with (and so on)…are no longer calling in the wild. But what the world and I can share with her and her generation, can give her, can leave her, are recordings.

Kaua’i `O’o: http://macaulaylibrary.org/audio/6031

Po’ouli: http://macaulaylibrary.org/audio/5125

Hawaiian Crow: http://macaulaylibrary.org/audio/13434

The library I am constantly creating, shaped by my choice and perspective…where to hit start, when to stop, where to point the mic, what equipment to use, how to frame this aural moment that captured me and invoked the desire to save and to share.

I think of this very often these days, as a friend and great soundscape ecologist and composer has passed. Steve Miller (www.stevemiller.net ) left a wealth of music, sound, and writing that his daughter and family can share. His daughter will be able to put on headphones and share a space her father formed with his perspective, his choices, his interests. A sharing active with him.

A sharing that transcends time and space.

 

The artist and her daughter in the studio, Image by JS

The artist and her daughter in the studio, Image by JS

 .

Future Memory, for Odette

Sound has a hold over my daughter in a way I wasn’t quite expecting. It’s almost a punch line that the daughter of two parents that work with and study sound would have such sensitivity. The smallest sounds can pull her from sleep, can pull her from eating. They can be a character for her, making her laugh, cry, yawn, widen her eyes in amazement.

It was only natural my partner and I decided to make an album as a gift to our daughter. We had wanted to do the same marking our history together years back, and had various sound recordings and unfinished ditties in a library marked “Future Memory.”  The idea behind it was an aural coming together of our history and feelings expressed and translated through sound and song. We realized, of course, in many ways this was Odette’s history as well, and she our future.

The album became Future Memory, for Odette, a lullaby album in dedication and celebration to her, and including sounds from her growing in the womb, soundscapes we hope will be a part of her life, and in recording them in some way ensuring that, a score written for her while I was in labor from a friend, songs her father and I began and finished together during the stages of pregnancy, birth, and her first year, and collaborations and contributions in sound and music from family and friends would be her legacy.

This is her first song:

Dedicated to Odette Helen, and to the family, daughter, and memory of Steve Miller

“Future Memory, for Odette” to be released in 2015 through Wild Silence (www.wild-silence.com ). A dedication album to a new born daughter…a mix of her parents’ recorded and shared sounds, memories, hopes, and dreams towards a future with her. Sounds of her womb-scape, birth, and first year…music in collaboration with friends and family across oceans and land…an album of lullabies for Odette.

Maile Colbert is a multi-media artist with a concentration on sound and video who relocated from Los Angeles, US to Lisbon, Portugal. She is a regular writer for Sounding Out!

tape reelREWIND! . . .If you liked this post, you may also dig:

On Sound and Pleasure: Meditations on the Human Voice– Yvon Bonenfant

This Is Your Body on the Velvet Underground– Jacob Smith

Sound Designing Motherhood: Irene Lusztig & Maile Colbert Open The Motherhood Archives– Maile Colbert

 

Future Memory: Womb Sound As Shared Experience Crossing Time and Space

Odette cry

This Month will feature a two-part post by SO! regular writer Maile Colbert.  Look for Part Two on Monday, January 19th.

I was a child obsessed with time travel. Beyond favorites such as A Wrinkle in Time and Time Bandits, I perpetually daydreamed of the ability to pause, reverse, and fast-forward my life. I had a book on the “olden days” and it amazed me that my great-grandparents, whom I had the fortune to know, had lived them. I wanted to fast forward and see myself their current age, telling stories to the next generations of a good life lived. I used to entertain the thought that if I let my breath go and let myself sink to the bottom of a body of water, I could pause time, or at least slow it down, as the sound of the fluid world around me seemed to suggest. Whenever my family moved, I made a time capsule, and I always scanned the ocean for long lost bottled messages. These were the beginnings of my future in time-based media–both image and sound–my love for found footage, and my recent research and writing on sound back in time.

Now as a new mother, I am beginning to think about the future in a way I hadn’t before. I see my mother in my daughter, and I see her mother, and my partner’s mother. I recognize my grandfather’s eyebrow when furrowed, and her grandfather’s nose. My mouth when smiling, my partner’s mouth when in concentration.

And our ears. . .our very sensitive hearing, almost like a punch line. Our daughter is truly the daughter of sound artists. In this first post of a two part series on humans’ earliest interactions with sound, I document our work sounding and listening together, which began in a future-oriented past I am still learning about.

Womb

There was a study in which doctors gave babies only a day old pacifiers connected to tape recorders. Depending on the pattern of the new babies suck, the tape recorder would either switch on the sound of the mother’s voice, or a stranger’s.

“Within 10 to 20 minutes, the babies learned to adjust their sucking rate on the pacifier to turn on their own mother’s voice,” says the study’s coauthor William Fifer, Ph.D., an associate professor of psychiatry and pediatrics at Columbia University’s College of Physicians and Surgeons. “This not only points out a newborn’s innate love for his mother’s voice but also a baby’s unique ability to learn quickly.”

-What Babies Learn in the Womb,” 2014, Lara Flynn Maccarthy, Parenting

My daughter Odette knew my voice the moment she was born. In a strange, bright, cold new world, it seemed one constant she could rely upon. When she was first placed upon my chest, I started to sing to her, and she was calming, staring at me, as much as her newborn eyes would let her, with an expression of surprised recognition, as this familiar voice sang a familiar song, one I sang her often in the womb.  One I knew by heart because my mother would sing it to me when I was a child.

 

Are you going to Scarborough Fair

Parsley, sage, rosemary and thyme

Remember me to the one who lives there

She once was a true love of mine. . .

The mother’s voice comes to the fetus not solely as ambient sound through the abdomen, as other external sounds and voices would, but also through the vocal cords’ internal vibration. There is a direct connection, a shared space. As early as the seventh month, a fetal heartbeat will slow and calm to the sound of the mother’s voice, and research has shown newborns even prefer a similar version of their mother’s voice to what they heard in the womb, muffled and low. When Odette suffered colic in her early months, one sure way to help comfort her was to sing to her while she was on my chest. Aside from the close contact of skin, the familiar smell, the warmth, it could be that hearing my voice also through the chest mimicked the womb filter.

In the tape recorder study, researchers also noted that newborns would suck more intensely to recordings of people speaking in the language of their mothers, most likely picking up on the melody and rhythm. We are beginning to understand that learning starts in the womb.

Fetal Soap Addiction

Carmen Bank found her 1985 pregnancy rather boring. So, to pass the time, she started doing something she would never have dreamed of: watching a soap opera.

Unexpectedly, she found herself hooked. And so she spent almost every morning in front of her television set, ready for the familiar theme of “Ryan’s Hope.” After Melissa was born that October, Bank bought a videocassette recorder so she could tape the show when she was too busy to watch.

Bank isn’t sure when she discovered the behavior, but, shortly after Melissa was born, Bank realized that the baby seemed to recognize the “Ryan’s Hope” theme and would stop fussing when the program began.

“She’d just sit there and watch the whole introduction and then she would start imitating what they do on the show,” Bank said. “This has been going on forever.”

-The Very Young and Restless, Do Soaps Hook the Unborn? June 28, 1988, Allan Parachini, The New York Times

 

My third trimester was a rough one.   I was a walking swimming pool of about forty pounds of baby and amniotic fluid. My pelvis had gone completely out of line, making even that pregnancy waddle slow and difficult. Needless to say, I was less and less mobile. I was lucky that much of my remaining work was writing and studio based, but often found myself having to take mental breaks as well. My body/mind chemistry was working overtime. Something that happens with pregnancy when preparing mentally for your new, shared life is to think a lot about your own childhood. I was lucky to have a happy one, and so strong nostalgic feelings and memories would come up, particularly around the television show Dr. Who.  I used to spend a happy hour with my father once a week watching reruns from the 70’s in the 80’s.

Dr. Who returned to broadcast in the 2000s, in a few new successful regenerations.  The new iteration uses a lot of the classic themes, characters, and even remixes and re-masters the the original opening score written by Ron Grainer and realized by the great Delia Derbyshire for the BBC Radiophonic Workshop in 1963; the Dr. Who theme was one of the very first signature electronic music tunes, and performed well before commercial synthesizers were even available. Derbyshire used musique concrete techniques, cutting each note individually on analogue tape, speeding up and slowing down to create the notes from recordings of a single plucked string, white noise, and the simple harmonic waveforms of test-tone oscillators. (Grainer was famous for asking after hearing Derbyshire’s magic, “Did I write that?”. Derbyshire replied “Most of it.” The BBC, who kept members of the Radiophonic Workshop anonymous, prevented Grainer from giving Derbyshire a co-composer credit and a share of the royalties.)

It is a really, really catchy tune:

While Odette was in the womb, I watched all of those decades addictively, one after another. When I came across the soap opera study after she was born, I decided my obsessive Who-watching had set up a perfect laboratory to try it out myself. We started in 1963 and moved through time with the Doctor. Odette looked up in surprise and her brow furrowed in concentration. She looked around slowly at first, then faster and faster. She smiled; she cooed; she laughed. She started to flap her arms.

.

When I finally turned it off, she stopped everything and looked concerned. I turned it on again and we danced together in clear recognition of this already-shared future past sonic moment, one I had with my father and now with her. Now I understood that as I consumed Dr. Who, Odette was not only hearing, she was learning, and beginning the act of listening.

Sounds have a surprising impact upon the fetal heart rate: a five second stimulus can cause changes in heart rate and movement which last up to an hour. Some musical sounds can cause changes in metabolism. “Brahm’s Lullaby,” for example, played six times a day for five minutes in a premature baby nursery produced faster weight gain than voice sounds played on the same schedule (Chapman, 1975)

-The Fetal Sense, A Classical View, David B. Chamberlain, Birth Psychology

Wombscapes 

Odette’s very first movements, her first “quickening”, was in response to David Bowie’s “Starman”.  This was around 16 weeks, often the time for first movements in the fetus, and interestingly also the time when the hearing has developed.  The fetus floats in a rich and complex soundscape; it is anything but quiet. The womb filter…amniotic fluid, embryonic membranes, uterus, the maternal abdomen-low frequencies, and blood in veins whooshing, then Mother’s voice and body noises such as hiccups and the gurgles of digestion and of course, the heartbeat. The Mother’s heartbeat can be as loud as a vacuum cleaner and ultra sounds as loud as a subway car arriving in a train station.We can try to mimic the womb-scape, imagining sounds being filtered through the body. We can use a hydrophone–a pressure microphone designed to be sensitive to soundwaves through fluid matter–on the abdomen to get an idea and sample for our womb-scape.

Perhaps it would sound something like this…

…reactive listening begins eight weeks before the ear is structurally complete at about 24 weeks. These findings indicate the complexity of hearing, lending support to the idea that receptive hearing begins with the skin and skeletal framework, skin being a multireceptor organ integrating input from vibrations, thermo receptors, and pain receptors. This primal listening system is then amplified with vestibular and cochlear information as it becomes available. With responsive listening proven at 16 weeks, hearing is clearly a major information channel operating for about 24 weeks before birth.

-The Fetal Sense, A classical view

Sound artist and Acoustic Ecologist Andrea Williams has been recently working on a composition for Bellybuds, for her yet born nephew. Bellybuds are “a specialized speaker system that gently adheres to your belly & safely plays memory-shaping sound directly to the womb.”  Much of her work is composed with space in mind, using room sounds in a live performance situation. Williams told me it was interesting thinking about the womb as a new “venue,” with her little developing nephew as her audience. “What is he hearing?”  she asked,  “will he recognize me right away upon meeting him for the first time if he only hears the sound of my voice through the Bellybuds while he is a fetus?” I love the idea that she could send a “hello” from one place to her nephew in the womb in another.

The more we understand and realize about fetal hearing and processing sound, the more we understand how fetuses can detect subtle changes and process complex information. Memory starts to form around 30 weeks, and it’s possible early sound interventions at this time could help babies with detected abnormal development. Speaking and singing to the unborn fetus, allowing them to experience different soundscapes while still in the womb, helps shape their brains. This is probably why the urge to do so is there.

. . .Odette’s first dance. Odette’s first songs. . . transcending time and space.

dedicated to Odette Helen, and to the family, daughter, and memory of Steven Miller

Featured Image: Odette’s Birth Cry, photo credit Rui Costa

The album Future Memory, for Odette will be released in 2015 through Wild Silence.  A dedication album to a newborn daughter…a mix of her parents’ recorded and shared sounds, memories, hopes, and dreams towards a future with her. Sounds of her womb-scape, birth, and first year…music in collaboration with friends and family across oceans and land…an album of lullabies for Odette.

Maile Colbert is a multi-media artist with a concentration on sound and video who relocated from Los Angeles, US to Lisbon, Portugal. She is a regular writer for Sounding Out!

tape reelREWIND! . . .If you liked this post, you may also dig:

On Sound and Pleasure: Meditations on the Human Voice– Yvon Bonenfant

This Is Your Body on the Velvet Underground– Jacob Smith

Sound Designing Motherhood: Irene Lusztig & Maile Colbert Open The Motherhood Archives– Maile Colbert

 

Optophones and Musical Print

The word type, as scanned by the optophone.

From E.E. Fournier d’Albe, The Moon Element (New York: D. Appleton & Company, 1924), 141.

 

In 1912, British physicist Edmund Fournier d’Albe built a device that he called the optophone, which converted light into tones. The first model—“the exploring optophone”—was meant to be a travel aid; it converted light into a sound of analogous intensity. A subsequent model, “the reading optophone,” scanned print using lamp-light separated into beams by a perforated disk. The pattern of light reflected back from a given character triggered a corresponding set of tones in a telephone receiver. d’Albe initially worked with 8 beams, producing 8 tones based on a diatonic scale. He settled on 5 notes: lower G, and then middle C, D, E and G. (Sol, do, re, mi, sol.) The optophone became known as a “musical print” machine. It was popularized by Mary Jameson, a blind student who achieved reading speeds of 60 words per minute.

Photograph of the optophone, an early scanner with a rounded glass bookrest.

Reading Optophone, held at Blind Veterans UK (formerly St. Dunstan’s). Photographed by the author. With thanks to Robert Baker for helping me search through the storeroom to locate this item.

Scientific illustration of the optophone, showing a book on the bookrest and a pair of headphones for listening to the tonal output.

Schematic of optophone from Vetenskapen och livet (1922)

In the field of media studies, the optophone has become renowned through its imaginary repurposings by a number of modernist artists. For one thing, the optophone finds brief mention in Finnegan’s Wake. In turn, Marshall McLuhan credited James Joyce’s novel for being a new medium, turning text into sound. In “New Media as Political Forms,” McLuhan says that Joyce’s own “optophone principle” releases us from “the metallic and rectilinear embrace of the printed page.” More familiar within media studies today, Dada artist Raoul Hausmann patented (London 1935), but did not successfully build, an optophone presumably inspired by d’Albe’s model, which he hoped would be employed in audiovisual performances. This optophone was meant to convert sound into light as well as the reverse. It was part of a broader contemporary impulse to produce color music and synaesthetic art. Hausmann also wrote optophonetic poetry, based on the sounds and rhythms of “pure phonemes” and non-linguistic noises. In response, Francis Picabia painted two optophone portraits in 1921 and 22. Optophone I, below, is composed of lines that might be sound waves, with a pattern that disorders vision.

Francis Picabia's Optophone I, a series of concentric black circles with a female figure at the center.

Francis Picabia, Optophone I (1922)

Theorists have repeatedly located Hausmann’s device at the origin of new media. Authors in the Audiovisuology, Media Archaeology, and Beyond Art: A Third Culture anthologies credit Hausmann’s optophone with bringing-into-being cybernetics, digitization, the CD-ROM, audiovisual experiments in video art, and “primitive computers.” It seems to have escaped notice that d’Albe also used the optophone to create electrical music. In his book, The Moon Element, he writes:

Needless to say, any succession or combination of musical notes can be picked out by properly arranged transparencies, and I have succeeded in transcribing a number of musical compositions in this manner, which are, of course, only audible in the telephone. These notes, in the absence of all other sounding mechanism, are particularly pure and free from overtones. Indeed, a musical optophone worked by this intermittent light, has been arranged by means of a simple keyboard, and some very pleasant effects may thus be obtained, more especially as the loudness and duration of the different notes is under very complete and separate control.

E.E. Fournier d’Albe, The Moon Element (New York: D. Appleton & Company, 1924), 107.

d’Albe’s device is typically portrayed as a historical cul-de-sac, with few users and no real technical influence. Yet optophones continued to be designed for blind people throughout the twentieth century; at least one model has users even today. Musical print machines, or “direct translators,” co-existed with more complex OCR-devices—optical character recognizers that converted printed words into synthetic speech. Both types of reading machine contributed to today’s procedures for scanning and document digitization. Arguably, reading optophones intervened more profoundly into the order of print than did Hausmann’s synaesthetic machine: they not only translated between the senses, they introduced a new symbolic system by which to read. Like braille, later vibrating models proposed that the skin could also read.

In December 1922, the Optophone was brought to the United States from the United Kingdom for a demonstration before a number of educators who worked with blind children; only two schools ordered the device. Reading machine development accelerated in the U.S. around World War II. In his position as chair of the National Defense Research Committee, Vannevar Bush established a Committee on Sensory Devices in 1944, largely for the purpose of rehabilitating blind soldiers. The other options for reading—braille and Talking Books—were relatively scarce and had a high cost of production. Reading machines promised to give blind readers access to magazines and ephemeral print (recipes, signs, mail), which was arguably more important than access to books.

Piechowski, wearing a suit, scans the pen of the A-2 reader over a document.

Joe Piechowski with the A-2 reader. Courtesy of Rob Flory.

At RCA (Radio Corporation of America), the television innovator Vladimir Zworykin became involved with this project. Zworykin had visited Fournier d’Albe in London in the 19-teens and seen a demonstration of the optophone. Working with Les Flory and Winthrop Pike, Zworykin built an initial machine known as the A-2 that operated on the same principles, but used a different mechanism for scanning—an electric stylus, which was publicized as “the first pen that reads.” Following the trail of citations for RCA’s “Reading Aid for the Blind” patent (US 2420716A, filed 1944), it is clear that the “pen” became an aid in domains far afield from blindness. It was repurposed as an optical probe for measuring the oxygen content of blood (1958); an “optical system for facsimile scanners” (1972); and, in a patent awarded to Burroughs Corporation in 1964, a light gun. This gun, in turn, found its way into the handheld controls for the first home video game system, produced by Sanders Associates.

The A-2 optophone was tested on three blind research subjects, including ham radio enthusiast Joe Piechowski, who was more of a technical collaborator. According to the reports RCA submitted to the CSD, these readers were able to correlate the “chirping” or “tweeting” sounds of the machine with letters “at random with about eighty percent accuracy” after 60 hours of practice. Close spacing on a printed page made it difficult to differentiate between letters; readers also had difficulty moving the stylus at a steady pace and in a straight line. Piechowski achieved reading speeds of 20 words per minute, which RCA deemed too slow.

Attempts were made to incorporate “human factors” and create a more efficient tonal code, to reduce reading time as well as learning time and confusion between letters. One alternate auditory display was known as the compressed optophone. Rather than generate multiple tones or chords for a single printed letter, which was highly redundant and confusing to the ear, the compressed version identified only certain features of a printed letter: such as the presence of an ascender or descender. Below is a comparison between the tones of the original optophone and the compressed version, recorded by physicist Patrick Nye in 1965. The following eight lower case letters make up the source material: f, i, k, j, p, q, r, z.

Original record in the author’s possession. With thanks to Elaine Nye, who generously tracked down two of her personal copies at the author’s request. The second copy is now held at Haskins Laboratories.

An image of the letter r as scanned by the optophone and compressed optophone.

From Patrick Nye, “An Investigation of Audio Outputs for a Reading Machine,” AFB Research Bulletin (July 1965): 30.

 

Because of the seeming limitations of tonal reading, RCA engineers re-directed their research to add character recognition to the scanning process. This was controversial, direct translators like the optophone being perceived as too difficult because they required blind people to do something akin to learning to read print—learning a symbolic tonal or tactile code. At an earlier moment, braille had been critiqued on similar grounds; many in the blind community have argued that mainstream anxieties about braille sprang from its symbolic difference. Speed, moreover, is relative. Reading machine users protested that direct translators like the optophone were inexpensive to build and already available—why wait for the refinement of OCR and synthetic speech? Nevertheless, between November 1946 and May 1947, Zworykin, Flory, and Pike worked on a prototype “letter reading machine,” today widely considered to be the first successful example of optical character recognition (OCR). Before reliable synthetic speech, this device spelled out words letter by letter using tape recordings. The Letter-Reader was too massive and expensive for personal use, however. It also had an operating speed of 20 words per minute—thus it was hardly an improvement over the A-2 translator.

Haskins Laboratories, another affiliate of the Committee on Sensory Devices, began working on the reading machine problem around the same time, ultimately completing an enormous amount of research into synthetic speech and—as argued by Donald Shankweiler and Carol Fowler—the “speech code” itself. In the 1940s, before workable text-to-speech, researchers at Haskins wanted to determine whether tones or artificial phonemes (“speech-like speech”) were easier to read by ear. They developed a “machine dialect of English,” named wuhzi: “a transliteration of written English which preserved the phonetic patterns of the words.” An example can be played below. The eight source words are: With, Will, Were, From, Been, Have, This, That.

Original record in the author’s possession. From Patrick Nye, “An Investigation of Audio Outputs for a Reading Machine” (1965). With thanks to Elaine Nye.

Based on the results of tests with several human subjects, the Haskins researchers concluded that aural reading via speech-like sounds was necessarily faster than reading musical tones. Like the RCA engineers, they felt that a requirement of these machines should be a fast rate of reading. Minimally, they felt that reading speed should keep pace with rapid speech, at about 200 words per minute.

Funded by the Veterans Administration, members of Mauch Laboratories in Ohio worked on both musical optophones and spelled-speech recognition machines from the 1950s into the 1970s. One of their many devices, the Visotactor, was a direct-translator with vibro-tactile output for four fingers. Another, the Visotoner, was a portable nine-channel optophone. All of the Mauch machines were tested by Harvey Lauer, a technology transfer specialist for the Veterans Administration for over thirty years, himself blind. Below is an excerpt from a Visotoner demonstration, recorded by Lauer in 1971.

Visotoner demonstration. Original 7” open reel tape in author’s possession. With thanks to Harvey Lauer for sharing items from his impressive collection and for collaborating with the author over many years.

Lauer's fingers are pictured in the finger-rests of the Visotactor, scanning a document.

Harvey Lauer reading with the Visotactor, a text-to-tactile translator, 1977.

Later on the same tape, Lauer discusses using the Visotoner to read mail, identify currency, check over his own typing, and read printed charts or graphics. He achieved reading speeds of 40 words per minute with the device. Lauer has also told me that he prefers the sound of the Visotoner to that of other optophone models—he compares its sound to Debussy, or the music for dream sequences in films.

Mauch also developed a spelled speech OCR machine called the Cognodictor, which was similar to the RCA model but made use of synthetic speech. In the recording below, Lauer demonstrates this device by reading a print-out about IBM fonts. He simultaneously reads the document with the Visotoner, which reveals glitches in the Cognodictor’s spelling.

Original 7” open reel tape in the author’s possession. With thanks to Harvey Lauer.

A hand uses the metal probe of the Cognodictor to scan a typed document.

The Cognodictor. Glendon Smith and Hans Mauch, “Research and Development in the Field of Reading Machines for the Blind,” Bulletin of Prosthetics Research (Spring 1977): 65.

In 1972, at the request of Lauer and other blind reading machine users, Mauch assembled a stereo-optophone with ten channels, called the Stereotoner. This device was distributed through the VA but never marketed, and most of the documentation exists in audio format, specifically in sets of training tapes that were made for blinded veterans who were the test subjects. Some promotional materials, such as the short video below, were recorded for sighted audiences—presumably teachers, rehabilitation specialists, or funding agencies.

Mauch Stereo Toner from Sounding Out! on Vimeo.

Video courtesy of Harvey Lauer.

Mary Jameson corresponded with Lauer about the stereotoner, via tape and braille, in the 1970s. In the braille letter pictured below she comments, “I think that stereotoner signals are the clearest I have heard.”

Scan of a braille letter from Jameson to Lauer.

Letter courtesy of Harvey Lauer. Transcribed by Shafeka Hashash.

In 1973, with the marketing of the Kurzweil Reader, funding for direct translation optophones ceased. The Kurzweil Reader was advertised as the first machine capable of multi-font OCR; it was made up of a digital computer and flatbed scanner and it could recognize a relatively large number of typefaces. Kurzweil recalls in his book The Age of Spiritual Machines that this technology quickly transferred to Lexis-Nexis as a way to retrieve information from scanned documents. As Lauer explained to me, the abandonment of optophones was a serious problem for people with print disabilities: the Kurzweil Readers were expensive ($10,000-$50,000 each); early models were not portable and were mostly purchased by libraries. Despite being advertised as omnifont readers, they could not in fact recognize most printed material. The very fact of captchas speaks to the continued failures of perfect character recognition by machines. And, as the “familiarization tapes” distributed to blind readers indicate, the early synthetic speech interface was not transparent—training was required to use the Kurzweil machines.

Original cassette in the author’s possession. 

A young Kurzweil stands by his reading machine, demonstrated by Jernigan, who is seated.

Raymond Kurzweil and Kenneth Jernigan with the Kurzweil Reading Machine (NFB, 1977). Courtesy National Federation of the Blind.

Lauer always felt that the ideal reading machine should have both talking OCR and direct-translation capabilities, the latter being used to get a sense of the non-text items on a printed page, or to “preview material and read unusual and degraded print.” Yet the long history of the optophone demonstrates that certain styles of decoding have been more easily naturalized than others—and symbols have increasingly been favored if they bear a close relation to conventional print or speech. Finally, as computers became widely available, the focus for blind readers shifted, as Lauer puts it, “from reading print to gaining access to computers.” Today, many electronic documents continue to be produced without OCR, and thus cannot be translated by screen readers; graphical displays and videos are largely inaccessible; and portable scanners are far from universal, leaving most “ephemeral” print still unreadable.

Mara Mills is an Assistant Professor of Media, Culture, and Communication at New York University, working at the intersection of disability studies and media studies. She is currently completing a book titled On the Phone: Deafness and Communication Engineering. Articles from this project can be found in Social Text, differences, the IEEE Annals of the History of Computing, and The Oxford Handbook of Sound Studies. Her second book project, Print Disability and New Reading Formats, examines the reformatting of print over the course of the past century by blind and other print disabled readers, with a focus on Talking Books and electronic reading machines. This research is supported by NSF Award #1354297.

Standing Up, For Jose

pee

Round Circle of ResonanceThe following video installation by Mandie O’Connell, is part three of a four part series, “Round Circle of Resonance” by the Berlin based arts collective La Mission that performs connections between the theory of José Esteban Muñoz and sound art/study/theory/performance.

The first installment and second installments ran last Monday.  The opening salvo, written by La Mission’s resident essayist / deranged propagandist LMGM (Luis-Manuel Garcia) provides a brief introduction to our collective, some reflections on Muñoz’s relevance to our activities, and a frame for the next three missives from our fellow cultists. It is backed with a rousing sermon-cum-manifesto from our charismatic cult-leader/prophet, El Jefe (Pablo Roman-Alcalá).  Next Monday, our saucy Choir Boy/Linguist (Johannes Brandis) will close the forum with a dirge to our dearly departed José (August 9, 1967- December, 4, 2013).

LMGM a.k.a. Luis-Manuel Garcia (curator)

“Standing Up”

Concept and Performance: Mandie O’Connell

Filming and Editing: Piss Nelke

Music: Khrom Ju (La Mission)

Artist’s Statement

Piss is Power.

Power exists in urination, in this basic and most crucial of bodily acts.  Problems with urination can result in embarrassment, infection, hospitalization.  And yet so many of us women encounter confining, unfair, cruel, and Puritan limitations to where, when, and how we can pee, while our male counterparts traipse around urinating wherever they please.  It is time, brothers and sisters, to re-politicize piss.

Brother Muñoz taught us that utopian projects require fellow participants, not audiences. We need a Urinary Utopia, a Piss Paradise that is open to men, women, trans and intersex people of all colors.  Let’s shower down a blissful piss, a rainbow-colored golden shower where we all can piss wherever the fuck we want to!

"Magical Pissing" by Flickr User Studio Grafico EPICS

“Magical Pissing” by Flickr User Studio Grafico EPICS

In my performance video, I attempt to create a Muñoz-inspired utopian sensibility through the enactment of a new modality of an everyday action.  I use a Female Urination Device—which enables me to stand up and urinate—to take a Yellow Adventure around my neighborhood.  I piss freely in places where my penis-having brethren piss.  I piss in a urinal next to which “Piss on me Bitch” is crudely scrawled. I piss into the river Spree, symbolically owning it with my liquid gold.  Finally, I write my name in piss, a macho action turned feminine, the power and privilege of said action redirected towards my vagina.

In “Standing Up,” three different sounds are mixed together to create the soundscape of the performance: ambient noise, music, and sound clips of urination.  The ambient noise serves to locate the scene in space/time.  The music by Khrom Ju was selected to give the performance an eerie, strange, and repetitive undertone.  The sound of urination was recorded live and is the sound of female urination.  We use this sound both as a cue and as comic relief.  Piss is funny, piss is strange, and piss happens all around us.

don't piss

“Hackney Rd E2 PISS” by flickr user Stupid Pony

Urination and the female struggle around it is a real struggle that really happens and really matters.  Exceptionally long lines for the ladies’ room, the inability to publically urinate at festivals due to feeling exposed and shamed, being charged money to use toilet facilities when males can piss outdoors for free, getting forced to use a ladies’ room when your sexuality sways towards using the men’s room, the list of complaints goes on and on.  So I say: pee where you want, not where others want you to.  Pee on administrators, police, politicians, and oppressors of all kinds while you’re at it!

I refuse to adhere to these rules anymore, and I beg you to follow my lead.

Piss is Power.

Featured Image adapted from  “Pee” by Flickr User Melissa Eleftherion Carr

Mandie O’Connell (yo) aka “Knuckle Cartel, is  a former big cheese and intellectual powerhouse behind the wildly successful Seattle-based experimental theater company Implied Violence. I, Mandie, have experienced the same “conservatism” and capitalistic partnership between Money and Art in the performance/theater scene. Witnessing firsthand the immense power that cash-wielding creeps hold over creatives is sickening, sad, and sordid. I’ve had enough, and so have you…right? Let’s fix a broken system. If we can’t fix it, let’s circumvent it. 

tape reelREWIND!…If you liked this post, check out:

Queer Timbres, Queered Elegy: Diamanda Galás’s The Plague Mass and the First Wave of the AIDS Crisis

-Airek Beauchamp

On Sound and Pleasure: Meditations on the Human Voice–Yvon Bonenfant

Sound Designing Motherhood: Irene Lusztig & Maile Colbert Open The Motherhood Archives– Maile Colbert

 

%d bloggers like this: