Tag Archive | Hawaii

Sounding Out! Podcast #51: Creating New Words From Old Sounds

CLICK HERE TO DOWNLOADCreating New Words from Old Sounds

SUBSCRIBE TO THE SERIES VIA ITUNES

ADD OUR PODCASTS TO YOUR STITCHER FAVORITES PLAYLIST

This podcast looks at how ancestral languages are spoken in today’s changing environment of technology and popular culture. Here, Marcella Ernest leads a discussion considering how Indigenous people are adapting heritage languages to modern times. With an open mind and creative methodologies, Native language communities, activists, scholars, and educators are working to integrate and inspire our heritage languages to continue into the 21st century and beyond. Finding new words with old sounds is intended as a means of both preserving language and helping people to learn it. How do heritage languages change to accommodate new things like computers, cell phones, and popular culture? Can ancestral sounds be translated to create new words?

Guests: 

Candace Gala, PhD (Hawaiian) The University of British Columbia, Language and Literacy Education

Leslie Harper (Ojibwe) Director, National Coalition of Native American Language Schools and Programs (NCNALSP)

Daryn McKenny, (Gamilaraay – Aboriginal Australian) Miromaa Aboriginal Language & Technology Centre

Marcella Ernest is a Native American (Ojibwe) interdisciplinary video artist and scholar. Her work combines electronic media with sound design with film and photography in a variety of formats; using multi-media installations incorporating large-scale projections and experimental film aesthetics. Currently living in California, Marcella is completing an interdisciplinary Ph.D. in American Studies at the University of New Mexico. Drawing upon a Critical Indigenous Studies framework to explore how “Indianness” and Indigenity are represented in studies of American and Indigenous visual and popular culture, her primary research is an engagement with contemporary Native art to understand how members of colonized groups use a re-mix of experimental video and sound design as a means for cultural and political expressions of resistance.

www.marcellakwe.com

Featured image is used with permission by the author.

tape reelREWIND! . . .If you liked this post, you may also dig:

Sounding Out! Podcast #24: The Raitt Street Chronicles: A Survivor’s History – Sharon Sekhon and Manuel “Manny” Escamilla

Sounding Out! Podcast #47: Finding the Lost Sounds of Kaibah — Marcella Ernest

Sounding Out! Podcast #40: Linguicide, Indigenous Community, and the Search for Lost Sounds – Marcella Ernest

Of Sound Machines and Recording, Sharing that Transcends Time and Space

This is the conclusion to a two-part post by SO! regular writer Maile Colbert.  Read Part One from Monday, January 12th here.

As we are primarily a visual culture, no longer connected to what environments can tell us through sound, we’ve lost aural acuity once central to the dynamic of our lives.

From what we have just begun to see, it appears that ancient human beings had learned well the lessons imparted by natural sounds. Their lives depended as much (if not more) on their ability to hear and understand the audio information imparted by their surroundings as those given by visual cues. –Bernard Krause, Ph.D The Soundscape Newsletter 06, June, 1993

Birth 

All newborns emerge with the same cry, it is near impossible to distinguish one from another, even as a mother. This could be for many reasons and serve many purposes. Should something happen to a birth mother, the indistinguishable cry may help draw attention from another. It could be that, considering niche effect (in which animals adapt their calls to a frequency less populated by other environmental sounds), aside from biological reasons, a newborn’s cry is shaped by the wombscape from whence it came, and I speculate that generally speaking one wombscape is similar to another. Primarily what a fetus is hearing is low frequency. So it would serve that they would have an instinct to initially call out in a high frequency range. The baby then develops its cry according to its surrounding, such as a household in the city versus a country, a household with other children or not, a household with constant media sound.

My daughter has the most incredible earsplitting high frequency bark when she wants attention. If this doesn’t work (such as when “Baby, Mama has to wash the garden manure from her hands before she picks you up”), she’ll roll into a gritty horrific low growl that sounds like she’s being strangled. One of these always works, and I often wonder about these sounds’ relationship to the white noise (her specific mix in a more mid-range involving pink noise and a “rain on roof” recording) that has been a constant since her birth, and is still used for naps, some feedings, and bedtime.

 

Sound Machines and Noise

From my late pregnancy insomnia, to creating a calming environment in the labor room at the hospital, to keeping a consistent calming environment in the recovery room, to using that sound as a signal that it is time to calm, time to sleep…a sound machine has been a constant already in my daughter’s new world. It started with an app in Paris, at a festival during my third trimester, my waddling condition wouldn’t allow me to walk around much nor meet friends for drinks, etc. So I choose to stay in the hotel room and read. The fetal babe wasn’t in the mood to read, kicking and dancing, perhaps excited from the music at the festival. For a little while I played with her, her kicking in response to my pokes and prods. But soon I knew we both needed to both settle down. I was always fascinated by my parents’ sound machine as a child, it seemed something magical. I found and downloaded an app that allowed you to create your own mix, and so it began.

But recent research poses the question of whether a sound machine can actually affect hearing development. Some researchers have questioned if prolonged exposure to consistent sound could affect auditory pathways to the brain. I wonder what then of infants who grow up near, say, the ocean…or like my mother near a stream and small waterfall, a constant sound in her childhood and soundtrack to her memories from then. Or near a busy road or even walkway. Of course I want the babe to grow up to enjoy and focus on a varied soundscape. But at certain points, the noise has been a lifesaver! It’s been especially useful now combatting construction sounds, as babies tend to focus on background sounds, most likely for survival:

.

Of course it is very important to be aware of the strength of the sound a baby is exposed to, all too easy for our very visual culture to ignore. Even a sound machine with the volume too high, or the proximity too close, could reach decibels over 80, a threshold that could cause the tiny hair cells in the ear needed for hearing to die. As we lose these, we start to lose our hearing. The amount of energy in a sound doubles with even just a three decibel climb. If any sound makes it difficult to hold a regular conversation, chances are it’s past this threshold and could be doing damage. Our world is in many ways getting increasingly louder. As our cities grow, its sounds grow, and we are exposed to more constant and louder soundscapes. Will an accidental evolution be for us to adapt to losing our hearing? For me of course, this is a very bleak thought.

 

Death

Your words are preserved in the tin foil and will come back upon the application of the instrument years after you are dead in exactly the same tone of voice you spoke in then. . . . This tongueless, toothless instrument, without larynx or pharynx, dumb, voiceless matter, nevertheless mimics your tones, speaks with your voice, speaks with your words, and centuries after you have crumbled into dust will repeat again and again, to a generation that could never know you, every idle thought, every fond fancy, every vain word that you chose to whisper against this thin iron diaphragm.

-Edison’s Ars Memoria, concept for the phonograph

Kauai O'O

Kaua’i `O’o, extinct since 1987

A recorded sound transcends time. It allows a listener to share a space and perspective with the recordist. It allows a future people to hear the songs of people passed, and of their shared past. It allows for an extinct bird to call into the future, for a child to hear that bird and wonder, and question, and to have that question affect her future and therefore perhaps the future of others. I often think about what soundscapes or sound I have experienced that my daughter might not have the opportunity to experience when she’s older. Already since my childhood growing up in part in Hawaii, three birds I knew, I had heard, that my mother grew up with, that her father grew up with, that his parents grew up with (and so on)…are no longer calling in the wild. But what the world and I can share with her and her generation, can give her, can leave her, are recordings.

Kaua’i `O’o: http://macaulaylibrary.org/audio/6031

Po’ouli: http://macaulaylibrary.org/audio/5125

Hawaiian Crow: http://macaulaylibrary.org/audio/13434

The library I am constantly creating, shaped by my choice and perspective…where to hit start, when to stop, where to point the mic, what equipment to use, how to frame this aural moment that captured me and invoked the desire to save and to share.

I think of this very often these days, as a friend and great soundscape ecologist and composer has passed. Steve Miller (www.stevemiller.net ) left a wealth of music, sound, and writing that his daughter and family can share. His daughter will be able to put on headphones and share a space her father formed with his perspective, his choices, his interests. A sharing active with him.

A sharing that transcends time and space.

 

The artist and her daughter in the studio, Image by JS

The artist and her daughter in the studio, Image by JS

 .

Future Memory, for Odette

Sound has a hold over my daughter in a way I wasn’t quite expecting. It’s almost a punch line that the daughter of two parents that work with and study sound would have such sensitivity. The smallest sounds can pull her from sleep, can pull her from eating. They can be a character for her, making her laugh, cry, yawn, widen her eyes in amazement.

It was only natural my partner and I decided to make an album as a gift to our daughter. We had wanted to do the same marking our history together years back, and had various sound recordings and unfinished ditties in a library marked “Future Memory.”  The idea behind it was an aural coming together of our history and feelings expressed and translated through sound and song. We realized, of course, in many ways this was Odette’s history as well, and she our future.

The album became Future Memory, for Odette, a lullaby album in dedication and celebration to her, and including sounds from her growing in the womb, soundscapes we hope will be a part of her life, and in recording them in some way ensuring that, a score written for her while I was in labor from a friend, songs her father and I began and finished together during the stages of pregnancy, birth, and her first year, and collaborations and contributions in sound and music from family and friends would be her legacy.

This is her first song:

Dedicated to Odette Helen, and to the family, daughter, and memory of Steve Miller

“Future Memory, for Odette” to be released in 2015 through Wild Silence (www.wild-silence.com ). A dedication album to a new born daughter…a mix of her parents’ recorded and shared sounds, memories, hopes, and dreams towards a future with her. Sounds of her womb-scape, birth, and first year…music in collaboration with friends and family across oceans and land…an album of lullabies for Odette.

Maile Colbert is a multi-media artist with a concentration on sound and video who relocated from Los Angeles, US to Lisbon, Portugal. She is a regular writer for Sounding Out!

tape reelREWIND! . . .If you liked this post, you may also dig:

On Sound and Pleasure: Meditations on the Human Voice– Yvon Bonenfant

This Is Your Body on the Velvet Underground– Jacob Smith

Sound Designing Motherhood: Irene Lusztig & Maile Colbert Open The Motherhood Archives– Maile Colbert

 

Erratic Furnaces of Infrasound: Volcano Acoustics

Hearing the Unheard IIWelcome back to Hearing the UnHeard, Sounding Out‘s series on how the unheard world affects us, which started out with my post on hearing large and small, continued with a piece by China Blue on the sounds of catastrophic impacts, and now continues with the deep sounds of the Earth itself by Earth Scientist Milton Garcés.

Faculty member at the University of Hawaii at Manoa and founder of the Earth Infrasound Laboratory in Kona, Hawaii, Milton Garces is an explorer of the infrasonic, sounds so low that they circumvent our ears but can be felt resonating through our bodies as they do through the Earth. Using global networks of specialized detectors, he explores the deepest sounds of our world from the depths of volcanic eruptions to the powerful forces driving tsunamis, to the trails left by meteors through our upper atmosphere. And while the raw power behind such events is overwhelming to those caught in them, his recordings let us appreciate the sense of awe felt by those who dare to immerse themselves.

In this installment of Hearing the UnHeard, Garcés takes us on an acoustic exploration of volcanoes, transforming what would seem a vision of the margins of hell to a near-poetic immersion within our planet.

– Guest Editor Seth Horowitz

The sun rose over the desolate lava landscape, a study of red on black. The night had been rich in aural diversity: pops, jetting, small earthquakes, all intimately felt as we camped just a mile away from the Pu’u O’o crater complex and lava tube system of Hawaii’s Kilauea Volcano.

The sound records and infrared images captured over the night revealed a new feature downslope of the main crater. We donned our gas masks, climbed the mountain, and confirmed that indeed a new small vent had grown atop the lava tube, and was radiating throbbing bass sounds. We named our acoustic discovery the Uber vent. But, as most things volcanic, our find was transitory – the vent was eventually molten and recycled into the continuously changing landscape, as ephemeral as the sound that led us there in the first place.

Volcanoes are exceedingly expressive mountains. When quiescent they are pretty and fertile, often coyly cloud-shrouded, sometimes snowcapped. When stirring, they glow, swell and tremble, strongly-scented, exciting, unnerving. And in their full fury, they are a menacing incandescent spectacle. Excess gas pressure in the magma drives all eruptive activity, but that activity varies. Kilauea volcano in Hawaii has primordial, fluid magmas that degass well, so violent explosive activity is not as prominent as in volcanoes that have more evolved, viscous material.

Well-degassed volcanoes pave their slopes with fresh lava, but they seldom kill in violence. In contrast, the more explosive volcanoes demolish everything around them, including themselves; seppuku by fire. Such massive, disruptive eruptions often produce atmospheric sounds known as infrasounds, an extreme basso profondo that can propagate for thousands of kilometers. Infrasounds are usually inaudible, as they reside below the 20 Hz threshold of human hearing and tonality. However, when intense enough, we can perceive infrasound as beats or sensations.

Like a large door slamming, the concussion of a volcanic explosion can be startling and terrifying. It immediately compels us to pay attention, and it’s not something one gets used to. The roaring is also disconcerting, especially if one thinks of a volcano as an erratic furnace with homicidal tendencies. But occasionally, amidst the chaos and cacophony, repeatable sound patterns emerge, suggestive of a modicum of order within the complex volcanic system. These reproducible, recognizable patterns permit the identification of early warning signals, and keep us listening.

Each of us now have technology within close reach to capture and distribute Nature’s silent warning signals, be they from volcanoes, tsunamis, meteors, or rogue nations testing nukes. Infrasounds, long hidden under the myth of silence, will be everywhere revealed.

Cookie Monster

The “Cookie Monster” skylight on the southwest flank of Pu`u `O`o. Photo by J. Kauahikaua 27 September 2002

I first heard these volcanic sounds in the rain forests of Costa Rica. As a graduate student, I was drawn to Arenal Volcano by its infamous reputation as one of the most reliably explosive volcanoes in the Americas. Arenal was cloud-covered and invisible, but its roar was audible and palpable. Here is a tremor (a sustained oscillation of the ground and atmosphere) recorded at Arenal Volcano in Costa Rica with a 1 Hz fundamental and its overtones:

.

In that first visit to Arenal, I tried to reconstruct in my minds’ eye what was going on at the vent from the diverse sounds emitted behind the cloud curtain. I thought I could blindly recognize rockfalls, blasts, pulsations, and ground vibrations, until the day the curtain lifted and I could confirm my aural reconstruction closely matched the visual scene. I had imagined a flashing arc from the shock wave as it compressed the steam plume, and by patient and careful observation I could see it, a rapid shimmer slashing through the vapor. The sound of rockfalls matched large glowing boulders bouncing down the volcano’s slope. But there were also some surprises. Some visible eruptions were slow, so I could not hear them above the ambient noise. By comparing my notes to the infrasound records I realized these eruption had left their deep acoustic mark, hidden in plain sight just below aural silence.

Arenal, Costa Rica, May 1, 2010. Image by Flickr user Daniel Vercelli.

Arenal, Costa Rica, May 1, 2010. Image by Flickr user Daniel Vercelli.

I then realized one could chronicle an eruption through its sounds, and recognize different types of activity that could be used for early warning of hazardous eruptions even under poor visibility. At the time, I had only thought of the impact and potential hazard mitigation value to nearby communities. This was in 1992, when there were only a handful of people on Earth who knew or cared about infrasound technology. With the cessation of atmospheric nuclear tests in 1980 and the promise of constant vigilance by satellites, infrasound was deemed redundant and had faded to near obscurity over two decades. Since there was little interest, we had scarce funding, and were easily ignored. The rest of the volcano community considered us a bit eccentric and off the main research streams, but patiently tolerated us. However, discussions with my few colleagues in the US, Italy, France, and Japan were open, spirited, and full of potential. Although we didn’t know it at the time, we were about to live through Gandhi’s quote: “First they ignore you, then they laugh at you, then they fight you, then you win.”

Fast forward 22 years. A computer revolution took place in the mid-90’s. The global infrasound network of the International Monitoring System (IMS) began construction before the turn of the millennium, in its full 24-bit broadband digital glory. Designed by the United Nations’s Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), the IMS infrasound detects minute pressure variations produced by clandestine nuclear tests at standoff distances of thousands of kilometers. This new, ultra-sensitive global sensor network and its cyberinfrastructure triggered an Infrasound Renaissance and opened new opportunities in the study and operational use of volcano infrasound.

Suddenly endowed with super sensitive high-resolution systems, fast computing, fresh capital, and the glorious purpose of global monitoring for hazardous explosive events, our community rapidly grew and reconstructed fundamental paradigms early in the century. The mid-naughts brought regional acoustic monitoring networks in the US, Europe, Southeast Asia, and South America, and helped validate infrasound as a robust monitoring technology for natural and man-made hazards. By 2010, infrasound was part of the accepted volcano monitoring toolkit. Today, large portions of the IMS infrasound network data, once exclusive, are publicly available (see links at the bottom), and the international infrasound community has grown to the hundreds, with rapid evolution as new generations of scientists joins in.

In order to capture infrasound, a microphone with a low frequency response or a barometer with a high frequency response are needed. The sensor data then needs to be digitized for subsequent analysis. In the pre-millenium era, you’d drop a few thousand dollars to get a single, basic data acquisition system. But, in the very near future, there’ll be an app for that. Once the sound is sampled, it looks much like your typical sound track, except you can’t hear it. A single sensor record is of limited use because it does not have enough information to unambiguously determine the arrival direction of a signal. So we use arrays and networks of sensors, using the time of flight of sound from one sensor to another to recognize the direction and speed of arrival of a signal. Once we associate a signal type to an event, we can start characterizing its signature.

Consider Kilauea Volcano. Although we think of it as one volcano, it actually consists of various crater complexes with a number of sounds. Here is the sound of a collapsing structure

As you might imagine, it is very hard to classify volcanic sounds. They are diverse, and often superposed on other competing sounds (often from wind or the ocean). As with human voices, each vent, volcano, and eruption type can have its own signature. Identifying transportable scaling relationships as well as constructing a clear notation and taxonomy for event identification and characterization remains one of the field’s greatest challenges. A 15-year collection of volcanic signals can be perused here, but here are a few selected examples to illustrate the problem.

First, the only complete acoustic record of the birth of Halemaumau’s vent at Kilauea, 19 March 2008:

.

Here is a bench collapse of lava near the shoreline, which usually leads to explosions as hot lava comes in contact with the ocean:

.

.

Here is one of my favorites, from Tungurahua Volcano, Ecuador, recorded by an array near the town of Riobamba 40 km away. Although not as violent as the eruptive activity that followed it later that year, this sped-up record shows the high degree of variability of eruption sounds:

.

.

The infrasound community has had an easier time when it comes to the biggest and meanest eruptions, the kind that can inject ash to cruising altitudes and bring down aircraft. Our Acoustic Surveillance for Hazardous Studies (ASHE) in Ecuador identified the acoustic signature of these type of eruptions. Here is one from Tungurahua:

.

Our data center crew was at work when such a signal scrolled through the monitoring screens, arriving first at Riobamba, then at our station near the Colombian border. It was large in amplitude and just kept on going, with super heavy bass – and very recognizable. Such signals resemble jet noise — if a jet was designed by giants with stone tools. These sustained hazardous eruptions radiate infrasound below 0.02 Hz (50 second periods), so deep in pitch that they can propagate for thousands of kilometers to permit robust acoustic detection and early warning of hazardous eruptions.

In collaborations with our colleagues at the Earth Observatory of Singapore (EOS) and the Republic of Palau, infrasound scientists will be turning our attention to early detection of hazardous volcanic eruptions in Southeast Asia. One of the primary obstacles to technology evolution in infrasound has been the exorbitant cost of infrasound sensors and data acquisition systems, sometimes compounded by export restrictions. However, as everyday objects are increasingly vested with sentience under the Internet of Things, this technological barrier is rapidly collapsing. Instead, the questions of the decade are how to receive, organize, and distribute the wealth of information under our perception of sound so as to construct a better informed and safer world.

IRIS Links

http://www.iris.edu/spud/infrasoundevent

http://www.iris.edu/bud_stuff/dmc/bud_monitor.ALL.html, search for IM and UH networks, infrasound channel name BDF

Milton Garcés is an Earth Scientist at the University of Hawaii at Manoa and the founder of the Infrasound Laboratory in Kona. He explores deep atmospheric sounds, or infrasounds, which are inaudible but may be palpable. Milton taps into a global sensor network that captures signals from intense volcanic eruptions, meteors, and tsunamis. His studies underscore our global connectedness and enhance our situational awareness of Earth’s dynamics. You are invited to follow him on Twitter @iSoundHunter for updates on things Infrasonic and to get the latest news on the Infrasound App.

Featured image: surface flows as seen by thermal cameras at Pu’u O’o crater, June 27th, 2014. Image: USGS

tape reel

REWIND! If you liked this post, check out …

SO! Amplifies: Ian Rawes and the London Sound Survey — Ian Rawes

Sounding Out Podcast #14: Interview with Meme Librarian Amanda Brennan — Aaron Trammell

Catastrophic Listening — China Blue

%d bloggers like this: